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1. INTRODUCTION AND SUMMARY 

I n  the following it will be shown that a simple argument based on the 
use of the energy integral equation of the laminar boundary layer permits 
the derivation of a heat transfer formula valid for non-uniform temperature 
distribution and non-zero pressure gradients. The formula is then shown 
to be identical in structure with Lighthill’s (1950) well-known results. 
Lighthill obtained his formula by solving the boundary layer equations in 
the von Mises form using operational methods. An elegant way to obtain 
the same results using exact similarity consideration was given by Lagerstrom 
(not yet published). The derivation given here is probably the most simple- 
minded one and the method may be useful for other applications as well. 
Furthermore, it is shown that the approach can be slightly modified to 
permit application of the formula to flow near separation. The latter 
result is applied to the Falkner-Skan solution for just separating Aows and 
is found to be in excellent agreement with the exact solutions. 

2. LAMINAR FLOW FAR FROM SEPARATION 

The energy integral equation relating the heat flux qw at the surface 
to the enthalpy distribution h ( y )  through the boundary layer can be 
written 

where 6, p, u are boundary layer thickness, density, and x-component of 
the velocity vector, respectively. Heat produced by dissipation has been 
neglected. 

If the Prandtl number Pr is not very small”, qw is determined by the 
velocity distribution in the immediate neighbourhood of the wall. This is 
a well-known result first used by Fage & Falkner (1931). Thus 

where T~ and pw are shearing stress and viscosity at the wall. We will 
now express y in formula (2)  in terms of h and q in the neighbourhood of 
the wall and then employ a change of variables in (1) such that q is considered 
as a function of h. This transformation is patterned after Crocco’s method 
of using T ( X , U )  instead of ~ ( x , y ) .  We write 

= ( w a Y ) w Y  = (Tw/Pw)Y9 (2) 

h = h w  + (ahPY)wY = h w  - (c,/& 4wY, 
* The opposite case Pr << 1 is even easier since one can replace pu by pa U in (1). 
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and, on combining this with (Z), we have near the wall 
u = P7'1Tw(h, - h)/qw. (3) 

The heat flux q is given by 

The integration in (1) is performed at constant x and we can replace dy 
by dh using (4). Thus (1) can be written 

or, if we introduce the similarity variable 
h, -h  

17=-,7 

where h,  stands for the enthalpy at the edge of the layer, we have 

We now make the similarity assumptions that pp/(pwpw) and q/qw are 
functions of q only, that is 

While this cannot be exact in all cases, it is probably very closely satisfied 
for a large range of conditions, a fact which will be borne out by a comparison 
of the final results with known solutions, If the similarity is granted then 
the integral in ( 5 )  is a constant a, say, to be evaluated later. The result ( 5 )  
becomes a very simple differential equation from which qw as a function 
of r, and of Ah = h,  - h,  is easily obtained. We have from ( 5 )  

- - -  1 d(TwP,P,Ah3) - p y a  
qw dx q: a 

Multiplication with 2 / ( ~ ~  pwpw Ah3) makes the left side a perfect differential, 
and hence we find that 

- -  d ( T W  Pw Pw Ah3) = ( &)1'3 Py2[3[ d ( ~ ~  p, pw Ah3) dxI1Is ,  
4 ,  0 

or 

- qw = ($>,,' P r Z p  d ( ~ ~  pw pw Ah3)[ r'; 1/(~, pw pw Ah') dx]-'lS . (6) 
" 0  

The result (6)  permits the computation of qw if T ~ ( x )  and T,(x) or h,(x) 
are given. 

T o  determine the constant M. we have to choose a reasonable distribution 
of qp,pw/qwpp = j ( T ) * .  However, since only the cube root of a appears, 

* One can also use the known solution for a flat plate with uniform temperature 
to obtain a. 
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the results are very insensitive to the choice of the functionf(r)). If we 
base our approach again on Crocco’s work for the shearing stress we choose 

a simple function with the proper behaviour at the limits. The constant a 
then has the value 1 - trr = 0-215. T o  compare (6) with Lighthill’s (1950) 
formula it is easiest first to find qw(x) from (6) if Ah vanishes in the range 
(0,e) and then jumps to a constant value Aho for greater values of x .  In  
this way (6) can be written in the form of a Stieltjes integral like Lighthill’s 
formula, and the comparison is as follows. 

Lighthill’s result (1950, equation (29), with pp assumed constant) is 

f ( 7 )  = d ( 1 -  T2) ,  

Equation (6) transforms into exactly the same form but with a numerical 
constant ($a)l‘3 instead of 9-1/3/&!. With the value a = 0.215 determined 
above we obtain 0.524 for the constant compared with Lighthill’s value 
of 0.539. The agreement is thus better than 3%. Even with the worst 
possible choice off(7), namelyf(7) = 1, our constant would be reduced to 
only 0.490. 

3. LAMINAR FLOW NEAR SEPARATION 

It is now interesting to modify the approach to handle the flow near 
the separation point where T~ + 0. Here (2) obviously fails to represent u 
and the approximation becomes bad. However, it is an easy matter to try 
an approximation which represents u near a separation point. Here, 

(7) u = i . ~  232 
2Y ( ula.Y2)w 

Hence u = (Y2/211w) dPldx, 
and, proceeding as before, we obtain 

where /3 stands for the integral 
j1 f p  ?l2(l-7)d7. 

0 P w I lw  9 l q w  
The result (9) can be compared with the Falkner-Skan solution for just- 
separating flow. Lighthill gives a table showing the ratio (Nusselt 
number)/d(Reynolds number) for Falkner Skan flow and Pr = 0.7. The 
value given for this ratio for separating Falkner-Skan flow is 

Nu/d(Re,) = 0438. 
The value obtained from (9), again usingf(7) = 2/( 1 - q2) in the evaluation 
of j?, comes out to be 

Nu/d(Re,) = 0.48, 
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and agrees also within better than 3%. In  addition (9) shows explicitly 
the dependence of heat transfer on the Prandtl number near separation. 

4. EXTENSION TO HIGH MACH NUMBER FLOW 
The exact form of equation (l), valid for arbitrary Mach number, is 

i G 0  (d [h+&2-(h,+&U2)]pu d .  = -&. (10) 

Introducing the recovery enthalpy h,, we may write the integral in the 
form 

1; [(i -h,) + (h, - h,) - +( u2- u2 >IPU dY. 

It is often possible to neglect the terms 

and extend the derivations to the high Mach number case simply by replacing 
h, by h,. It is also possible of course to use the full equation (lo), but 
then the differential equation becomes more difficult and the essential 
simplicity of the approach is lost. 

h, - h, - +( U2- 242 ) 
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